Identifying genes related to drug anticancer mechanisms using support vector machine.

نویسندگان

  • Lei Bao
  • Zhirong Sun
چکیده

In an effort to identify genes related to the cell line chemosensitivity and to evaluate the functional relationships between genes and anticancer drugs acting by the same mechanism, a supervised machine learning approach called support vector machine was used to label genes into any of the five predefined anticancer drug mechanistic categories. Among dozens of unequivocally categorized genes, many were known to be causally related to the drug mechanisms. For example, a few genes were found to be involved in the biological process triggered by the drugs (e.g. DNA polymerase epsilon was the direct target for the drugs from DNA antimetabolites category). DNA repair-related genes were found to be enriched for about eight-fold in the resulting gene set relative to the entire gene set. Some uncharacterized transcripts might be of interest in future studies. This method of correlating the drugs and genes provides a strategy for finding novel biologically significant relationships for molecular pharmacology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DeRisi. The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. PLoS Biology, 1(1):e5, 2003.

[2] L. Bao and Z. Sun. Identifying genes related to drug anticancer mechanisms using support vector machine. Tissue classification with gene expression profiles. Expression profiling of the schizont and trophozoite stages of Plasmod-ium falciparum with a long-oligonucleotide microarray.based analysis of microarray gene expression data by using support vector machines.tional relationships betwee...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 521 1-3  شماره 

صفحات  -

تاریخ انتشار 2002